Tag Archives: chemistry

Reasons I became an engineer: #1

Photograph of aircraft carrier in heavy seas for decorative purposes onlyThis is the first in a series of posts in which I am going to reflect on my route to becoming an engineer.  These events happened around forty years ago so inevitably my recollections probably have more in common with folklore than reliable history.  Nevertheless, I hope they might be of interest.

I was good at mathematics at school but also geography and when required to specialise at the age of sixteen would have preferred to study mathematics, geography and perhaps economics.  However, my parents and my school, had other ideas and decided that partnering chemistry and physics with mathematics would give me more opportunities in terms of university courses and careers.  Physics was manageable but Chemistry was a complete mystery to me.  I left school shortly before my eighteenth birthday and joined the Royal Navy as a midshipman.  I went to Dartmouth Naval College where, as part of my training to become a seaman officer, I was taught to march, navigate, fight fires, sail yachts, drive motor launches and fly helicopters as well as spending time with the Royal Marines.  After my basic naval training, which included time at sea on HMS Hermes, I went to University sponsored by the Royal Navy with a free choice of subject to study.  So, I chose Mechanical Engineering because I thought as an officer on the bridge of a ship, perhaps eventually in command of a ship, it would be useful to understand what the engineers were talking about when they asked for a change in operations due to technical difficulties.  At that stage in my life, I had no intention of becoming an engineer, but with hindsight it was my first step in that direction.

Citizens of the world

Last week in Liverpool, we hosted a series of symposia for participants in a dual PhD programme involving the University of Liverpool and National Tsing Hua University, in Taiwan, that has been operating for nearly a decade.  On the first day, we brought together about dozen staff from each university, who had not met before, and asked them to present overviews of their research and explore possible collaborations using as a theme: UN Sustainable Development Goal No.11: Sustainable Cities and Communities.  The expertise of the group included biology, computer science, chemistry, economics, engineering, materials science and physics; so, we had wide-ranging discussions.  On the second and third day, we connected a classroom on each campus using a video conferencing system and the two dozen PhD students in the dual programme presented updates on their research from whichever campus they are currently resident.  Each student has a supervisor in each university and divides their time between the two universities exploiting the expertise and facilities in the two institutions.

The range of topics covered in the student presentations was probably even wider than on the first day; extending from deep neural networks, through nuclear reactor technology, battery design and three-dimensional cell culturing to policy impacts on households.  One student spoke about the beauty of mathematical equations she is working on that describe the propagation of waves in lattice structures; while, another told us about his investigation of the causes of declining fertility rates across the world.  Data from the UN DESA Population Division show that live births per woman in the Americas & Europe have already fallen below the 2.1 required to sustain the population, while it is projected to fall below this level in south-east Asia within the next five years and in the world by 2060.  This made me think that perhaps the Gaia principle, proposed by James Lovelock, is operating and that human population is self-regulating as it interacts with constraints imposed by the Earth though perhaps not in a fashion originally envisaged.