Tag Archives: earth

Ample sufficiency of solar energy?

Global energy budget from Trenberth et al 2009

I have written several times about whether or not the Earth is a closed system [see for example: ‘Is Earth a closed system? Does it matter‘ on December 10th, 2014] & ‘Revisiting closed systems in Nature‘ on October 5th, 2016).  The Earth is not a closed thermodynamic system because there is energy transfer between the Earth and its surroundings as illustrated by the schematic diagram. Although, the total incoming solar radiation (341 Watts/sq. metre (W/m²)) is balanced by the sum of the reflected solar radiation (102 W/m²) and the outgoing longwave radiation (239 W/m²); so, there appears to be no net inflow or outflow of energy.  To put these values into perspective, the world energy use per capita in 2014 was 1919 kilograms oil equivalent, or 2550 Watts (according to World Bank data); hence, in crude terms we each require 16 m² of the Earth’s surface to generate our energy needs from the solar energy reaching the ground (161 W/m²), assuming that we have 100% efficient solar cells available. That’s a big assumption because the best efficiencies achieved in research labs are around 48% and for production solar cells it’s about 26%.

There are 7.6 billion of us, so at 16 m² each, we need  120,000 square kilometres of 100% efficient solar cells – that’s about the land area of Greece, or about 500,000 square kilometres with current solar cells, which is equivalent to the land area of Spain.  I picked these countries because, compared to Liverpool, the sun always shines there; but of course it doesn’t, and we would need more than this half million square kilometres of solar cells distributed around the world to allow the hours of darkness and cloudy days.

At the moment, China has the most generating capacity from photovoltaic (PV) cells at 78.07 GigaWatts or about 25% of global PV capacity and Germany is leading in terms of per capita generating capacity at 511 Watts per capita, or 7% of their electricity demand.  Photovoltaic cells have their own ecological footprint in terms of the energy and material required for their production but this is considerably lower than most of our current sources of energy [see, for example Emissions from photovoltaic life cycles by Fthenakis et al, 2008].

Sources:

Trenberth KE, Fasullo JT & Kiehl J, Earth’s global energy budget, Bulletin of  the American Meteorological Society, March 2009, 311-324, https://doi.org/10.1175/2008BAMS2634.1.

World Bank Databank: https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE

Nield D, Scientists have broken the efficiency record for mass-produced solar panels, Science Alert, 24th March 2017.

2016 Snapshot of Global Photovoltaic Markets, International Energy Agency Report IEA PVPS T1-31:2017.

Fthenakis VM, Kim HC & Alsema E, Emissions from photovoltaic life cycles, Environmental Science Technology, 42:2168-2174, 2008.

What a waste

20120609_wom915Einstein’s famous equation, E=mc², does not influence everyday interactions of energy, E and mass, m.  The speed of light, c is 299 792 458 m/s which is very big number and implies a huge amount of energy is required to create a small amount of mass.  This means that energy and mass are independently conserved.  For energy, this is the first law of thermodynamics while the law of conservation of mass is usually attributed to Antoine Lavoisier.  On a planetary scale, the conservation of mass implies that we can assume that the quantity of matter is constant.  Can we apply the second law of thermodynamics to matter as well as energy?  One interpretaton of the second law is that Gibbs energy, or the energy available to do useful work, must decrease in all real processes.   This also applies when matter moves through our economic system.  For instance, we must do work to convert mineral ores into useful products which gradually degrade through use and natural processes, such as corrosion, until they become scrap and we must expend more resources to recycle them and make them useful again.  The sun provides us with a steady supply of useful energy, so that in energy terms planet Earth can be considered an open system with energy flows in and out.  Conversely in mass terms, planet Earth is effectively a closed system with negligible mass flow in or out, so that we do not have a steady supply of new matter from which to manufacture goods.  However, most of us behave with open-world mindset and throw away matter (goods) that are no longer useful to us when we should be repairing and recycling [see my post entitled ‘Old is beautiful‘ on May 1st 2013].  Maybe we can’t reach the zero-waste status aimed at by people like Bea Johnson, but most of us could do better than the 2.2 kg of solid waste produced each day by each of us in OECD countries. That’s 2.1 tonnes per year for an average OECD household (2.63 people)!

Sources:

The New Sustainable Frontier – principles of sustainable development, GSA Office of Governmentwide Policy, September 2009.

Daniel Hoornweq & Perinaz Bhada-Tata, What a Waste: A Global Review of Solid Waste Management, World Bank No.15, 2012.

http://www.economist.com/blogs/graphicdetail/2012/06/daily-chart-3

Is Earth a closed system? Does it matter?

 Earth's annual global mean energy budget,  from Kiehl and Trenberth 1997

Earth’s annual global mean energy budget, from Kiehl and Trenberth 1997

The dictionary definition of a system is ‘a set of things working together as parts of a mechanism or an interconnecting network; a complex whole’. So it is easy to see why ‘systems engineering’ has become ubiquitous: because it is difficult to design anything in engineering that is not some kind of system.  Perhaps the earliest concept of a system in post-industrial revolution engineering is the thermodynamic system, which is a well-defined quantity of matter that can exchange energy with its environment.

Engineers define thermodynamic systems by drawing arbitrary boundaries around ‘quantities of matter’ that are of interest, for instance the contents of a refrigerator or the inside of the cylinder of a diesel engine [see my post entitled ‘Drawing Boundaries‘ on December 19th, 2012].  These boundaries can be permeable to matter in which case the system is described as an ‘open system’, as in the case of an diesel engine cylinder into which fuel is injected and exhaust gases ejected. Conversely, the boundary of a ‘closed system’ is impermeable to matter, i.e. the refrigerator with the door closed.  The analysis of a closed system is usually much simpler than for an open one.  In his Gaia theory, James Lovelock proposed that the Earth was a self-regulated complex system.  Is it also a closed thermodynamic system?  It is clear that energy exchange occurs between the Earth and its surroundings as a consequence of solar radiation incident on the Earth (about 342 Watts/square meter) and radiation from the Earth as a consequence of reflection of solar radiation (about 107 Watts/square meter) and its temperature (235 Watts/square meter).  This implies that we can consider the Earth as a thermodynamic system.  The Earth’s gravitation field ensures that nothing much leaves; at the same time the vast of emptiness of space means that collisions with matter happen only very occasionally, so the inward flow of matter to Earth is negligible.  So, perhaps we could approximate Earth as a closed thermodynamic system.

Does it matter?  Yes, I believe so, because it influences how we think about our complex life support system, or spaceship Earth that sustains and protects us, as Max Tegmark describes it in his book ‘Our Mathematical Universe’.  In a closed system there is finite amount of matter that cannot be replenished, which implies that the Earth’s resources are finite.  However, our current western lifestyle is focused on consumption which is incompatible with a sustainable society in a closed system.  Even the Earth’s energy balance appears to be in equilibrium based on the data in the figure and so we should be careful about massive schemes for renewable energy that might disturb the Gaia.

Sources:

Kiehl, J.T., and Trenberth, K.E., 1997, Earth’s annual global mean energy budget, Bulletin – American Meteorological Society, 78(2):197-208.

Thess, A., The Entropy Principle – Thermodynamics for the Unsatisfied, Springer-Verlag, Berlin, 2011.

Tegmark, M., Our Mathematical Universe, Penguin Books Ltd, 2014.