Tag Archives: additive manufacturing

Star sequence minimises distortion

It is some months since I have written about engineering so this post is focussed on some mechanical engineering.  The advent of pneumatic and electric torque wrenches has made it impossible for the ordinary motorist to change a wheel because it is very difficult to loosen wheel nuts by hand when they have been tightened by a powered wrench which most of us do not have available.  This has probably made motoring safer but also means we are more likely to need assistance when we have a flat tire.  It also means that the correct tightening pattern for nuts and bolts is less widely known.  A star-shaped sequence is optimum, i.e., if you have six bolts numbered sequentially around a circle then you start with #1, move across the diameter to #4, then to #2 followed by #5 across the diameter, then to #3 and across the diameter to #6.  This sequence is optimum for flanges, bolted joints in the frames of buildings and joining machine parts as well as wheel nuts.  We have recently discovered that it works in reverse, in the sense that it is the optimum sequence for releasing parts made by additive manufacturing (AM) from the baseplate of the AM machine (see ‘If you don’t succeed try and try again’ on September 29th, 2021).  Additive manufacturing induces large residual stresses as a consequence of the cycles of heat input to the part during manufacturing and some of these stresses are released when it is removed from the baseplate of the AM machine, which causes distortion of the part.  Together with a number of collaborators, I have been researching the most effective method of building thin flat plates using additive manufacturing (see ‘On flatness and roughness’ on January 19th, 2022).  We have found that building the plate vertically layer-by-layer works well when the plate is supported by buttresses on its edges.  We have used two in-plane buttresses and four out-of-plane buttresses, as shown in the photograph, to achieve parts that have comparable flatness to those made using traditional methods.  It turns out that optimum order for the removal of the buttresses is the same star sequence used for tightening bolts and it substantially reduces distortion of the plate compared to some other sequences.  Perhaps in retrospect, we should not be surprised by this result; however, hindsight is a wonderful thing.

The current research is funded jointly by the National Science Foundation (NSF) in the USA and the Engineering and Physical Sciences Research Council (EPSRC) in the UK and the project was described in ‘Slow start to an exciting new project on thermoacoustic response of AM metals’ on September 9th 2020.

Image: Photograph of a geometrically-reinforced thin plate (230 x 130 x 1.2 mm) built vertically layer-by-layer using the laser powder bed fusion process on a baseplate (shown removed from the AM machine) with the supporting buttresses in place.

Sources:

Patterson EA, Lambros J, Magana-Carranza R, Sutcliffe CJ. Residual stress effects during additive manufacturing of reinforced thin nickel–chromium plates. IJ Advanced Manufacturing Technology;123(5):1845-57, 2022.

Khanbolouki P, Magana-Carranza R, Sutcliffe C, Patterson E, Lambros J. In situ measurements and simulation of residual stresses and deformations in additively manufactured thin plates. IJ Advanced Manufacturing Technology; 132(7):4055-68, 2024.

Wire arc additive manufacturing applied to cosmetic dentistry?

photograph of a flower for decorative purposes onlyLast weekend I sat down at my laptop to write this week’s post with only a vague idea of a topic. When I opened my laptop I was surprised to see two emails from a supposedly reputable commercial publisher inviting me to be a guest editor for two special issues of two different journals.  For two decades, I served as editor-in-chief of two international journals consecutively with only a short overlap so I am well-qualified to act as a guest editor.  However, the invitations related to cosmetic dentistry and wire arc additive manufacturing.  I know almost nothing about these two subjects so why was I receiving invitations from the editors of two journals to be a guest editor.  In collaboration with colleagues, I have published some papers recently on another form of additive manufacturing [see ‘If you don’t succeed try and try again‘ on September 29th 2021].  My Google Scholar profile shows that my two most highly cited papers relate to work performed thirty years ago on osseointegrated dental implants [see ‘Turning the screw in dentistry‘ on September 30th, 2020]; although on closer examination it would also reveal that I have published nothing since then on this subject.  I suspect that a poorly programmed algorithm was fooled by my eclectic and long publication record into issuing poorly targeted invitations rather than the academic editors exercising poor judgment.  At least, I hope that is what happened since the alternative is that journal editors are no longer exercising academic judgment (though it is obvious this is also happening given the incoherent reviews of manuscripts that editors too frequently pass on to authors probably without reading them).  I will treat these invitations as spam; however, others may see them as opportunities to create or expand ‘peer-review’ rings and put more ‘Rotten eggs in the store‘ [see post on November 30th, 2022].  The peer-review and publication system for scientific papers is clearly broken and one part of the solution is to remove commercial interests from the process.

On flatness and roughness

Photograph of aircraft carrier in heavy seas for decorative purposes onlyFlatness is a tricky term to define.  Technically, it is the deviation, or lack of deviation, from a plane. However, something that appears flat to human eye often turns out not to be at all flat when looked at closely and measured with a high resolution instrument.  It’s a bit like how the ocean might appear flat and smooth to a passenger sitting comfortably in a window seat of an aeroplane and looking down at the surface of the water below but feels like a roller-coaster to a sailor in a small yacht.  Of course, if the passenger looks at the horizon instead of down at the yacht below then they will realise the surface of the ocean is curved but this is unlikely to be apparent to the sailor who can only see the next line of waves advancing towards them.  Of course, the Earth is not flat and the waves are better described as surface roughness.  Some months ago I wrote about our struggles to build a thin flat metallic plate using additive manufacturing [see ‘If you don’t succeed, try and try again…’ on September 29th, 2021].  At the time, we were building our rectangular plates in landscape orientation and using buttresses to support them during the manufacturing process; however, when we removed the plates from the machine and detached the buttresses they deformed into a dome-shape.  I am pleased to say that our perseverance has paid off and recently we have been much more successful by building our plates orientated in portrait mode, i.e., with the short side of the rectangle horizontal, and using a more sophisticated design of buttresses.  Viewed from the right perspective our recent plates could be considered flat though in reality they deviate from a plane by less than 3% of their in-plane dimensions and also have a surface roughness of several tens of micrometres (that’s the average deviation from the surface).  The funding organisations for our research expect us to publish our results in a peer-reviewed journal that will only accept novel unpublished results so I am not going to say anything more about our flat plates.  Instead let me return to the ocean analogy and try to make you seasick by recalling an earlier career in which I was on duty on the bridge of an aircraft carrier ploughing through seas so rough, or not flat, that waves were breaking over the flight deck and the ship felt like it was still rolling and pitching when we sailed serenely into port some days later.

The current research is funded jointly by the National Science Foundation (NSF) in the USA and the Engineering and Physical Sciences Research Council (EPSRC) in the UK (see Grants on the Web).

Image from https://laststandonzombieisland.com/2015/07/22/warship-wednesday-july-22-2015-the-giant-messenger-god/1977-hms-hermes-r-12-with-her-bows-nearly-out-of-the-water/

If you don’t succeed, try and try again…

Photograph of S-shaped plateYou would not think it was difficult to build a thin flat metallic plate using a digital description of the plate and a Laser Powder Bed Fusion (L-PBF) machine which can build complex components, such as hip prostheses.  But it is.  As we have discovered since we started our research project on the thermoacoustic response of additively manufactured parts (see ‘Slow start to an exciting new project on thermoacoustic response of AM metals‘ on September 9th, 2020).  L-PBF involves using a laser beam to melt selected regions of a thin layer of metal powder spread over a flat bed.  The selected regions represent a cross-section of the desired three-dimensional component and repeating the process for each successive cross-section results in the additive building of the component as each layer solidifies.  And there in those last four words lies the problem because ‘as each layer solidifies’ the temperature distribution between the layers causes different levels of thermal expansion that results in strains being locked into our thin plates.  Our plates are too thin to build with their plane surfaces horizontal or perpendicular to the laser beam so instead we build them with their plane surface parallel to the laser beam, or vertical like a street sign.  In our early attempts, the residual stresses induced by the locked-in strains caused the plate to buckle into an S-shape before it was complete (see image).  We solved this problem by building buttresses at the edges of the plate.  However, when we remove the buttresses and detach the plate from the build platform, it buckles into a dome-shape.  Actually, you can press the centre of the plate and make it snap back and forth noisily.  While we are making progress in understanding the mechanisms at work, we have some way to go before we can confidently produce flat plates using additive manufacturing that we can use in comparisons with our earlier work on the performance of conventionally, or subtractively, manufactured plates subject to the thermoacoustic loading experienced by the skin of a hypersonic vehicle [see ‘Potential dynamic buckling in hypersonic vehicle skin‘ on July 1st 2020) or the containment walls in a fusion reactor.  Sometimes research is painfully slow but no one ever talks about it.  Maybe because we quickly forget the painful parts once we have a successful outcome to brag about. But it is often precisely the painful repetitions of “try and try again” that allow us to reach the bragging stage of a successful outcome.

The research is funded jointly by the National Science Foundation (NSF) in the USA and the Engineering and Physical Sciences Research Council (EPSRC) in the UK (see Grants on the Web).

References

Silva AS, Sebastian CM, Lambros J and Patterson EA, 2019. High temperature modal analysis of a non-uniformly heated rectangular plate: Experiments and simulations. J. Sound & Vibration, 443, pp.397-410.

Magana-Carranza R, Sutcliffe CJ, Patterson EA, 2021, The effect of processing parameters and material properties on residual forces induced in Laser Powder Bed Fusion (L-PBF). Additive Manufacturing. 46:102192