Tag Archives: materials science

Citizens of the world

Last week in Liverpool, we hosted a series of symposia for participants in a dual PhD programme involving the University of Liverpool and National Tsing Hua University, in Taiwan, that has been operating for nearly a decade.  On the first day, we brought together about dozen staff from each university, who had not met before, and asked them to present overviews of their research and explore possible collaborations using as a theme: UN Sustainable Development Goal No.11: Sustainable Cities and Communities.  The expertise of the group included biology, computer science, chemistry, economics, engineering, materials science and physics; so, we had wide-ranging discussions.  On the second and third day, we connected a classroom on each campus using a video conferencing system and the two dozen PhD students in the dual programme presented updates on their research from whichever campus they are currently resident.  Each student has a supervisor in each university and divides their time between the two universities exploiting the expertise and facilities in the two institutions.

The range of topics covered in the student presentations was probably even wider than on the first day; extending from deep neural networks, through nuclear reactor technology, battery design and three-dimensional cell culturing to policy impacts on households.  One student spoke about the beauty of mathematical equations she is working on that describe the propagation of waves in lattice structures; while, another told us about his investigation of the causes of declining fertility rates across the world.  Data from the UN DESA Population Division show that live births per woman in the Americas & Europe have already fallen below the 2.1 required to sustain the population, while it is projected to fall below this level in south-east Asia within the next five years and in the world by 2060.  This made me think that perhaps the Gaia principle, proposed by James Lovelock, is operating and that human population is self-regulating as it interacts with constraints imposed by the Earth though perhaps not in a fashion originally envisaged.


Mapping atoms

Typical atom maps of P, Cu, Mn, Ni & Si (clockwise from bottom centre) in 65x65x142 nm sample of steel from Styman et al, 2015.

A couple of weeks ago I wrote about the opening plenary talk at the NNL Sci-Tec conference [‘The disrupting benefit of innovation’ on May 23rd, 2018].  One of the innovations discussed at the conference was the applications of atom probe tomography for understanding the mechanisms underpinning material behaviour.  Atom probe tomography produces three-dimensional maps of the location and type of individual atoms in a sample of material.  It is a destructive technique that uses a high energy pulse to induce field evaporation of ions from the tip of a needle-like sample.  A detector senses the position of the ions and their chemical identity is found using a mass spectrometer.  Only small samples can be examined, typically of the order of 100nm.

A group led by Jonathan Hyde at NNL have been exploring the use of atom probe tomography to understand the post-irradiation annealing of weld material in reactor pressure vessels and to examine the formation of bubbles of rare gases in fuel cladding which trap hydrogen causing material embrittlement.  A set of typical three-dimensional maps of atoms is shown in the thumb-nail from a recent paper by the group (follow the link for the original image).

It is amazing that we can map the location of atoms within a material and we are just beginning to appreciate the potential applications of this capability.  As another presenter at the conference said: ‘Big journeys begin with Iittle steps’.

BTW it was rewarding to see one of our alumni from our CPD course [see ‘Leadership is like shepherding’ on May 10th, 2017] presenting this work at the conference.


Styman PD, Hyde JM, Parfitt D, Wilford K, Burke MG, English CA & Efsing P, Post-irradiation annealing of Ni-Mn-Si-enriched clusters in a neutron-irradiated RPV steel weld using atom probe tomography, J. Nuclear Materials, 459:127-134, 2015.