Tag Archives: waste

Man, the Rubbish Maker

167-6734_IMGBruce Sterling wrote that our current civilisation would be best described as ‘Man, the Rubbish Maker’ if we were to be judged by our efforts that will best survive the passage of time.  Paleontologists have found flint-knapping workshops more than two million years old that have out-lasted any record of the speech, culture or beliefs of the craftsmen that laboured in them.  Pollution and waste is not consumed and hence tends to persist while useful things wear out.  In a short story called ‘Daughters of the Moon’ published in 1968 as part of his third collection of Cosmicomics, Italo Calvino describes a world in which cars wear out more quickly than the soles of your shoes.  He goes on to describe a region where the road petered out in a hilly area created by ‘the layers of things that had been thrown away: everything that the consumerist city expelled once it had quickly used it up so it could immediately enjoy the pleasure of handling new things’.  Calvino was imagining a future world but we are rapidly approaching his vision, or perhaps we are already there.  Our junk, rubbish, and trash, is a form of entropy – an increase in the level of disorder created by the processes that provide our man-made lifestyle and required as a consequence of the second law of thermodynamics [see my post ‘Unavoidable junk‘ published on January 14th, 2013].  And ‘entropy requires no maintenance’, to quote Sterling, so much of our rubbish will still be here long after we have disappeared.

If we want to avoid Calvino’s vision of cities surrounded by layers of discarded things, then we have to learn to love old but serviceable belongings.  They are good enough and will suffice.  If they break then we should have them repaired, preferably locally in order to stimulate our economy and reduce our ecological footprint rather than replacing them with something made abroad.  This will require engineers to think more about repairs when designing artefacts and consumers to learn to appreciate the patina of age and usage as a virtue, something of beauty.


Bruce Sterling, Shaping Things, Boston: MIT Press, 2005.

Italo Calvino, The Complete Cosmicomics, London: Penguin Books, 2002.

Edwin Heathcote, Make and Mend, Financial Times, 30/31 March, 2013.

Subtle balance of sustainable orderliness

129-2910_IMGI wrote this short essay a couple of weeks for another purpose and then changed my mind about using it.  So I thought I would share it on this blog.

Whenever we do something, some of our useful resource gets converted into productive activity but some is always lost in useless waste.  In other words, 100% efficiency is impossible – we can’t convert all of our resource into productive activity.  Engineers call this the second law of thermodynamics.  Thermodynamics is about energy transitions, for instance converting chemical energy in fossil fuels into electrical energy in a power station, and in these circumstances, the useless waste is called entropy.  At the time of the industrial revolution, Rudolf Clausius recognised that entropy can be related to the heat losses which occur whenever we do something useful, such as generating electricity in a power station, cleaning the house with an electric vacuum cleaner or running to catch the bus.

Clausius’s definition of entropy was really useful for designers of 19th century steam engines but it is difficult to use in other walks of life.  Fortunately Ludwig Boltzmann gave us a more valuable description.  He equated entropy to the number of states in which something could be arranged, or its lack of orderliness.  In other words, the more ways you can arrange something, the less ordered it is likely to be and the higher its entropy.  So a box of children’s building blocks has a low entropy when the blocks are packed in their box because there is a relatively small number of ways of arranging them to fit in the box.  When the box is emptied onto your living room floor, there are very many more possible arrangements and so the blocks have a high entropy.  The chance of knowing the whereabouts of a particular block is small. Whoops!  Now we’ve wondered into information theory.

Let’s get back to the second law, which using Boltzmann’s description of entropy, we can express as the level of orderliness should always decrease.  Stephen Hawking describes this as the arrow of time.  Because, if someone shows you a video clip in which steam gathers itself together and returns into a cup of coffee, or that box of children’s blocks repacks itself, then we know the video is being run backwards because these processes involve decreasing entropy and this can only happen spontaneously if we reverse the direction of time.  If this is true then why do we exist as highly ordered structures?

Erwin Schrödinger in his book, ‘What is Life’ says that organisms suck orderliness out of the environment in order to exist, so that the orderliness of the universe, that’s the organism and its environment, decreases.  Humans digest highly-ordered food to sustain life and food, in the form of plants, is brought into existence by metabolising energy from the sun and releasing entropy in the form of heat.  When we die these processes cease and the orderliness is sucked out of us to sustain insects, maggots and bacteria.

We are organisms, known as Sapiens, that organise ourselves into cultures and societies.  Organisation implies an increase in the level of orderliness in apparent contradiction of the second law.  So, we would expect to find a corresponding increase in disorder somewhere to counterbalance the order in society.  The more regimented society becomes the greater the requirement for counterbalancing disorder to occur somewhere in order to satisfy the second law, which might happen unexpectedly and explosively if the level of constraint or regulation is too great.  This is not an argument for anarchy or total deregulation, the financial sector has already demonstrated the risks associated with this path, but for an optimum and sustainable level of orderliness.  This requires subtle judgment just like in elegant engineering design and living a healthy life, both physically and psychologically.

What a waste

20120609_wom915Einstein’s famous equation, E=mc², does not influence everyday interactions of energy, E and mass, m.  The speed of light, c is 299 792 458 m/s which is very big number and implies a huge amount of energy is required to create a small amount of mass.  This means that energy and mass are independently conserved.  For energy, this is the first law of thermodynamics while the law of conservation of mass is usually attributed to Antoine Lavoisier.  On a planetary scale, the conservation of mass implies that we can assume that the quantity of matter is constant.  Can we apply the second law of thermodynamics to matter as well as energy?  One interpretaton of the second law is that Gibbs energy, or the energy available to do useful work, must decrease in all real processes.   This also applies when matter moves through our economic system.  For instance, we must do work to convert mineral ores into useful products which gradually degrade through use and natural processes, such as corrosion, until they become scrap and we must expend more resources to recycle them and make them useful again.  The sun provides us with a steady supply of useful energy, so that in energy terms planet Earth can be considered an open system with energy flows in and out.  Conversely in mass terms, planet Earth is effectively a closed system with negligible mass flow in or out, so that we do not have a steady supply of new matter from which to manufacture goods.  However, most of us behave with open-world mindset and throw away matter (goods) that are no longer useful to us when we should be repairing and recycling [see my post entitled ‘Old is beautiful‘ on May 1st 2013].  Maybe we can’t reach the zero-waste status aimed at by people like Bea Johnson, but most of us could do better than the 2.2 kg of solid waste produced each day by each of us in OECD countries. That’s 2.1 tonnes per year for an average OECD household (2.63 people)!


The New Sustainable Frontier – principles of sustainable development, GSA Office of Governmentwide Policy, September 2009.

Daniel Hoornweq & Perinaz Bhada-Tata, What a Waste: A Global Review of Solid Waste Management, World Bank No.15, 2012.