Tag Archives: teaching

Everything is flux but it’s not always been recognised

Decorative photograph or ruins of Fountains Abbey next to River SkellI am teaching thermodynamics to first year undergraduate students at the moment and in most previous years this experience has stimulated me to blog about thermodynamics [for example: ‘Isolated systems in nature?’ on February 12th, 2020].  However, this year I am more than half-way through the module and this is the first post on the topic.  Perhaps that is an impact of teaching on-line via live broadcasts rather than the performance involved in lecturing to hundreds of students in a lecture theatre.  Last week I introduced the second law of thermodynamics and explained its origins in efforts to improve the efficiency of steam engines by 19th century engineers and physicists, including Rudolf Clausius (1822 – 1888), William Thomson (1827 – 1907) and Ludwig Boltzmann (1844 – 1906).  The second law of thermodynamics states that the entropy of the universe increases during all real processes, where entropy can be described as the degree of disorder. The traditional narrative is that thermodynamics was developed by the Victorians; however, I think that the ancient Greeks had a pretty good understanding of it without calling it thermodynamics.  Heraclitus (c. 535 BCE – c. 475 BCE) understood that everything is in flux and nothing is at rest so that the world is one colossal process.  This concept comes close to the modern interpretation of the second of law of thermodynamics in which the entropy in the universe is constantly increasing leading to continuous change.  Heraclitus just did not state the direction of flux.  Unfortunately, Plato (c. 429 BCE – c. 347 BCE) did not agree with Heraclitus, but thought that some divine intervention had imposed order on pre-existing chaos to create an ordered universe, which precludes a constant flux and probably set back Western thought for a couple of millennia.  However, it seems likely that in the 17th century, Newton (1643 – 1727) and Leibniz (1646 – 1716), when they independently invented calculus, had more than an inkling about everything being in flux.  In the 18th century, the pioneering geologist James Hutton (1726 – 1797), while examining the tilted layers of the cliff at Siccar Point in Berwickshire, realised that the Earth was not simply created but instead is in a state of constant flux.  His ideas were spurned at the time and he was accused of atheism.  Boltzmann also had to vigorously defend his ideas to such an extent that his mental health deteriorated and he committed suicide while on vacation with his wife and daughter.  Today, it is widely accepted that the second law of thermodynamics governs all natural and synthetic processes, and many people have heard of entropy [see ‘Entropy on the brain’ on November 29th, 2017] but far fewer understand it [see ‘Two cultures’ on March 5th, 2013].  It is perhaps still controversial to talk about the theoretical long-term consequence of the second law, which is cosmic heat death corresponding to an equilibrium state of maximum entropy and uniform temperature across the universe such that nothing happens and life cannot exist [see ‘Will it all be over soon?’ on November 2nd, 2016].  This concept caused problems to 19th century thinkers, particular James Clerk Maxwell (1831 – 1979), and even perhaps to Plato who theorised two worlds in his theory of forms, one unchanging and the other in constant change, maybe in an effort to dodge the potential implications of degeneration of the universe into chaos.

Image: decaying ruins of Fountains Abbey beside the River Skell.  Heraclitus is reported to have said ‘no man ever steps twice into the same river; for it’s not the same river and he’s not the same man’.

Collegiality as a defence against pandemic burnout

photograph of a flower for decorative purposes onlyMany of my less experienced colleagues ask, ‘what is collegiality?’  Collegiality is the glue that holds universities together according to Neeta Baporikar.  While Roland S. Barth suggested that if students are to learn and develop, then their teachers must also learn and develop and collegiality is the set of practices and culture that support this adult growth.  In this context, Thomas Hoerr has proposed that collegiality has five components: (i) teachers talking about students with teachers; (ii) teachers working together to develop education programmes; (iii) teachers observing one another; (iv) teachers teaching each other; and (v) teachers talking about education and working together on committees.  Neeta Baporikar echoes this view by concluding that if we hope to teach students to participate, examine issues, collaborate, think critically and synthesise new approaches then we should be their model.  

In an environment where research is a priority, it is possible to substitute ‘researcher’ for ‘teacher’ in the descriptions above.  Then collegiality becomes researchers talking about [research] students, researchers working together to develop research programmes, researchers observing one another, researchers teaching each other, and researchers talking about research and working together on committees.  The idea that collegiality is a strategy for excellence holds as well as for research as it does for teaching.

The pressures on early career academics in a research university can be intense and the temptation to focus exclusively on delivering teaching and performing research can lead individuals to work in isolation and to neglect the opportunities provided by active engagement with their colleagues.  However, leaders must also take responsibility for creating an environment in which collegiality can thrive and encouraging active participation – it is part our service to the academic community as leaders to create and maintain a culture of scholarship and excellence [see ‘Clueless on leadership style’ on June 14th, 2017].  Neeta Baporikar provides steps that heads of departments can take to nurture collegiality, including providing a vision, encouraging collaborative participation, listening to diverse opinions, building on people’s strengths, and being aware of the world outside the department.  This is similar to the shepherding approach to leadership that I wrote about in May 2017 [‘Leadership is like shepherding’ on May 10th, 2017].  However, it has all become much more difficult in a pandemic – both collegiality and leadership.  Last week an article in Nature suggested that pandemic burnout is rife amongst academics working long hours in isolation to transpose and deliver their teaching materials online, to maintain their research without the spontaneity of face-to-face discussions with their team or collaborators, and to support the well-being and mental health of students who are also at risk of burnout.  It is suggested that burnout can be managed by finding a forum to express your feelings, creating ways to detach from stress, prioritizing and normalizing conversations about mental health, and fighting the isolation through meeting with peers.  These steps are a combination of traditional collegiality and the five ways to well-being: connect, be active, take notice, keep learning and give [see graphic in ‘On the impact of writing on well-being’ on March 3rd, 2021].

References

Neeta Baporikar, Collegiality as a strategy for excellence in academia, IJ Strategic Change Management, 6(1), 2015.

Roland Barth, Improving schools from within, Jossey-Bass, 2010.

Virginia Gewin, Pandemic burnout is rampant in academia, Nature, 591: 489-491, 2021.

Thomas R. Hoerr, Principal Connection: The Juggler’s Guide to Collegiality, Communication Skills for Leaders, 72(7): 88 -89, 2015.