Is a coconut an isolated thermodynamic system? This is a question that I have been thinking about this week. A coconut appears to be impermeable to matter since its milk does not leak out and it might be insulated against heat transfer because its husk is used for insulation in some building products. If you are wondering why I am pondering such matters, then it is because, once again, I am teaching thermodynamics to our first year students (see ‘Pluralistic Ignorance‘ on May 1st, 2019). It is a class of more than 200 students and I am using a blended learning environment (post on 14th November 2018) that combines lectures with the units of the massive open online course (MOOC) that I developed some years ago (see ‘Engaging learners on-line‘ on May 25th, 2016). However, before devotees of MOOCs get excited, I should add that the online course is neither massive nor open because we have restricted it to our university students. In my first lecture, I talked about the concept of defining the system of interest for thermodynamic analysis by drawing boundaries (see ‘Drawing boundaries‘ on December 19th, 2012). The choice of the system boundary has a strong influence on the answers we will obtain and the simplicity of the analysis we will need to perform. For instance, drawing the system boundary around an electric car makes it appear carbon neutral and very efficient but including the fossil fuel power station that provides the electricity reveals substantial carbon emissions and significant reductions in efficiency. I also talked about different types of system, for example: open systems across whose boundaries both matter and energy can move; closed systems that do not allow matter to flow across their boundaries but allow energy transfers; and, isolated systems that do not permit energy or matter to transfer across their boundaries. It is difficult to identify closed systems in nature (see ‘Revisiting closed systems in nature‘ on October 5th, 2016); and so, once again I asked the students to suggest candidates but then I started to think about examples of isolated systems. I suspect that completely isolated systems do not exist; however, some systems can be approximated to the concept and considering them to be so, simplifies their analysis. However, I am happy to be corrected if anyone can think of one!
Image: https://www.flickr.com/photos/yimhafiz/4031507140 CC BY 2.0
Pingback: Everything is flux but it’s not always been recognised | Realize Engineering