Tag Archives: neurons

Amplified intelligence

Decorative imageNotebooks have been used for centuries to extend people’s minds while computers and smart phones have taken the extension to a new level.  I find myself using the more than 500 posts in this blog as an extension of my brain.  Not only to recall information but to reconstruct thought processes and ideas.  Perhaps it is idleness or just faster than waiting for my neurons to shuffle through options until they reassemble the pattern that I am looking for.  Of course, this blog is a very public extension of my mind and was accessed from more than 140 countries last year, as it has been every year since 2016, based on data from WordPress.  It is difficult to estimate the total readership of the blog because it is published through several media but last year it appeared to increase substantially.  I started posting in July 2012 [see ‘Why RealizeEngineering?‘] but only started weekly posts ten years ago this week on January 7th 2013 with ‘Renewable Energy?‘.  Today’s post is number 548.

A cyberneticist, W. Ross Ashby coined the term ‘amplified intelligence’ to describe the role of computers in extending our minds [W. Ross Ashby, An Introduction to Cybernetics, William Clowes & Sons, 1956].

Image: Painting in the possession of the author.

Space between the words

I am an habitual user of a fountain pen.  It is the only writing implement that I carry with me since I enjoy writing with a fountain pen and because I can keep track of one pen but no more than one.  I have used it, and its predecessors, to make notes in a series of forty notebooks that stretch back to when I started as a research assistant forty years ago.  I used to record laboratory results in my notebooks but nowadays I have a research team who perform all of the work in the laboratory.  I still use my pen and notebook to record meetings, ideas and notes on papers.  I find the process of writing notes by hand to be conducive to both remembering detail and connecting fragments of information into new thoughts and ideas.  I am not alone in having these experiences.  Researchers have found that taking notes by hand improves the performance of students in answering conceptual questions compared to students who use a laptop to take notes.  When you write on a laptop, it is easy to delete words and re-start a sentence, whereas to create a coherent set of notes in a book you need to craft a sentence prior to committing pen to paper.  Perhaps the latter process allows a more persistent assembly of neurons to be formed in your brain [see ‘Slow deep thoughts from a planet-sized brain‘ on March 25th, 2020]; or maybe it is just the irregular spacing between handwritten words which creates a more distinct pattern that can be more readily recalled than the repetitive single spaces in typed text.  I certainly feel there is a connection between recalling the image of a page from my notebook and remembering the content even though I cannot usually read the words in my mental image.

Crumb RM, Hildebrandt R & Sutton TM, The value of handwritten notes: a failure to find state-dependent effects when using a laptop to notes and complete a quiz, Teaching of Psychology, 49(1):7-13, 2022.

Psychological entropy increased by ineffectual leaders

Decorative image of a flowerYou might have wondered why I used ‘entropy’, and ‘psychological entropy’ in particular, as examples in my post on drowning in information a couple of weeks ago [‘We are drowning in information while starving for wisdom‘ on January 20th, 2021].  It was not random.  I spent some of the Christmas break catching up on my reading pile of interesting looking scientific papers and one on psychological entropy stimulated my thinking.  Psychological entropy is the concept that our brains are self-organising systems in a continual dialogue with the environment which leads to the emergence of a relatively small number of stable low-entropy states.  These states could be considered to be assemblies of neurons or patterns of thoughts, perhaps a mindset.  When we are presented with a new situation or problem to solve for which the current assembly or mindset is unsuitable then we start to generate new ideas by generating more and different assemblies of neurons in our brains.  Our responses become unpredictable as the level of entropy in our minds increases until we identify a new approach that deals effectively with the new situation and we add it to our list of available low-entropy stable states.  If the external environment is constantly changing then our brains are likely to be constantly churning through high entropy states which leads to anxiety and psychological stress.  Effective leaders can help us cope with changing environments by providing us with a narrative that our brains can use as a blueprint for developing the appropriate low-entropy state.  Raising psychological entropy by the right amount is conducive to creativity in the arts, science and leadership but too much leads to mental breakdown.

Sources:

Hirsh JB, Mar RA, Peterson JB. Psychological entropy: A framework for understanding uncertainty-related anxiety. Psychological review. 2012 Apr;119(2):304

Handscombe RD & Patterson EA, The Entropy Vector: connecting science and business, Singapore: World Scientific Press, 2004.

Thinking in straight lines is unproductive

I suspect that none of us think in straight lines.  We have random ideas that we progressively arrange into some sort of order, or forget them.  The Nobel Laureate, Herbert Simon thought that three characteristics defined creative thinking: first, the willingness to accept vaguely defined problems and gradually structure them; second, a preoccupation with problems over a considerable period of time; and, third, extensive background knowledge. The first two characteristics seem strongly connected because you need to think about an ill-defined problem over a significant period of time in order to gradually provide a structure that will allow you to create possible solutions.    We need to have random thoughts in order to generate new structures and possible solutions that might work better than those we have already tried out; so, thinking in straight lines is unlikely to be productive and instead we need intentional mind-wandering [see ‘Ideas from a balanced mind‘ on August 24th, 2016].   More complex problems will require the assembling of more components in the structure and, hence are likely to require a larger number of neurons to assemble and to take longer, i.e. to require longer and deeper thought with many random excursions [see ‘Slow deep thoughts from planet-sized brain‘ on March 25th, 2020] .

In a university curriculum it is relatively easy to deliver extensive background knowledge and perhaps we can demonstrate techniques to students, such as sketching simple diagrams [see ‘Meta-knowledge: knowledge about knowledge‘ on June 19th, 2019], so that they can gradually define vaguely posed problems; however, it is difficult to persuade students to become preoccupied with a problem since many of them are impatient for answers.  I have always found it challenging to teach creative problem-solving to undergraduate students; and, the prospect of continuing limitations on face-to-face teaching has converted this challenge into a problem requiring a creative solution in its own right.

Source:

Simon HA, Discovery, invention, and development: human creative thinking, Proc. National Academy of Sciences, USA (Physical Sciences), 80:4569-71, 1983.