Tag Archives: microscopy

Press release!

A jumbo jet has about six million parts of which roughly half are fasteners – that’s a lot of holes.

It is very rare for one of my research papers to be included in a press release on its publication.  But that’s what has happened this month as a consequence of a paper being included in the latest series published by the Royal Society.  The contents of the paper are not earth shattering in terms of their consequences for humanity; however, we have resolved a long-standing controversy about why cracks grow from small holes in structures [see post entitled ‘Alan Arnold Griffith‘ on  April 26th, 2017] that are meant to be protected from such events by beneficial residual stresses around the hole.  This is important for aircraft structures since a civilian airliner can have millions of holes that contain rivets and bolts which hold the structure together.

We have used mechanical tests to assess fatigue life, thermoelastic stress analysis to measure stress distributions [see post entitled ‘Counting photons to measure stress‘ on November 18th, 2015], synchrotron x-ray diffraction to evaluate residual stress inside the metal and microscopy to examine failure surfaces [see post entitled ‘Forensic engineering‘ on July 22nd, 2015].  The data from this diverse set of experiments is integrated in the paper to provide a mechanistic explanation of how cracks exploit imperfections in the beneficial residual stress field introduced by the manufacturing process and can be aided in their growth by occasional but modest overloads, which might occur during a difficult landing or take-off.

The success of this research is particularly satisfying because at its heart is a PhD student supported by a dual PhD programme between the University of Liverpool and National Tsing Hua University in Taiwan.  This programme, which supported by the two partner universities, is in its sixth year of operation with a steady state of about two dozen PhD students enrolled, who divide their time between Liverpool, England and Hsinchu, Taiwan.  The synchrotron diffraction measurements were performed, with a colleague from Sheffield Hallam University, at the European Synchrotron Research Facility (ESRF) in Grenoble, France; thus making this a truly international collaboration.

Source:

Amjad K, Asquith D, Patterson EA, Sebastian CM & Wang WC, The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron x-ray diffraction experiments, R. Soc. Open Sci. 4:171100.

Popping balloons

Balloons ready for popping

Balloons ripe for popping!

Each year in my thermodynamics class I have some fun popping balloons and talking about irreversibilities that occur in order to satisfy the second law of thermodynamics.  The popping balloon represents the unconstrained expansion of a gas and is one form of irreversibility.  Other irreversibilities, including friction and heat transfer, are discussed in the video clip on Entropy in our MOOC on Energy: Thermodynamics in Everyday Life which will rerun from October 3rd, 2016.

Last week I was in Florida at the Annual Conference of the Society for Experimental Mechanics (SEM) and Clive Siviour, in his JSA Young Investigator Lecture, used balloon popping to illustrate something completely different.  He was talking about the way high-speed photography allows us to see events that are invisible to the naked eye.  This is similar to the way a microscope reveals the form and structure of objects that are also invisible to the naked eye.  In other words, a high-speed camera allows us to observe events in the temporal domain and a microscope enables us to observe structure in the spatial domain.  Of course you can combine the two technologies together to observe the very small moving very fast, for instance blood flow in capillaries.

Clive’s lecture was on ‘Techniques for High Rate Properties of Polymers’ and of course balloons are polymers and experience high rates of deformation when popped.  He went on to talk about measuring properties of polymers and their application in objects as diverse as cycle helmets and mobile phones.