Tag Archives: Max Tegmark

Where is AI on the hype curve?

I suspect that artificial intelligence is somewhere near the top of the ‘Hype Curve’ [see ‘Hype cycle’ on September 23rd, 2015].  At the beginning of the year, I read Max Tegmark’s book, ‘Life 3.0 – being a human in the age of artificial intelligence’ in which he discusses the prospects for artificial general intelligence and its likely impact on life for humans.  Artificial intelligence means non-biological intelligence and artificial general intelligence is the ability to accomplish any cognitive task at least as well as humans.  Predictions vary about when we might develop artificial general intelligence but developments in machine learning and robotics have energised people in both science and the arts.  Machine learning consists of algorithms that use training data to build a mathematical model and make predictions or decisions without being explicitly programmed for the task.  Three of the books that I read while on vacation last month featured or discussed artificial intelligence which stimulated my opening remark about its position on the hype curve.  Jeanette Winterson in her novel, ‘Frankissstein‘ foresees a world in which humanoid robots can be bought by mail order; while Ian McEwan in his novel, ‘Machines Like Me‘, goes back to the early 1980s and describes a world in which robots with a level of consciousness close to or equal to humans are just being introduced to the market the place.  However, John Kay and Mervyn King in their recently published book, ‘Radical Uncertainty – decision-making beyond numbers‘, suggest that artificial intelligence will only ever enhance rather replace human intelligence because it will not be able to handle non-stationary ill-defined problems, i.e. problems for which there no objectively correct solution and that change with time.  I think I am with Kay & King and that we will shortly slide down into the trough of the hype curve before we start to see the true potential of artificial general intelligence implemented in robots.

The picture shows our holiday bookshelf.

Walking and reading during a staycation

I am on vacation this week though, due to the restrictions on our movement imposed to prevent the spread of the coronavirus, it will a be staycation in our house.  We usually go to the Lake District at this time of year to walk and read; so, I might make another virtual expedition [see: ‘Virtual ascent of Moel Famau‘ on April 8th, 2020], perhaps to climb Stickle Pike and Great Stickle this time.  I was asked recently about books I would recommend prospective science and engineering students to read in preparation for to going to university.  It is not the first time that I have been asked the question.  This time I thought I should respond via this blog since the disruption brought about by the pandemic probably means that many prospective students will have more time and less preparation prior to starting their university course.  So, here are six books that are all available as ebooks, and might be of interest to anyone who is staying home to counter the spread of coronavirus and has time to fill:

[1] It is hard to find good novels either written by an engineer or about engineering [see ‘Engineering novelist‘ on August 5th, 2015]; however, Nevil Shute’s novel ‘Trustee from the toolroom‘ [Penguin Books, 1960] satisfies all of these criteria.

I have more than 40 years experience of engineering science so I am not the best person to ask about books that will appeal to young people just starting their journey in the field; however two books that have been popular recently are: [2] ‘Storm in a teacup: the physics of everyday life‘ by Helen Czerski [Penguin Books, 2016] and [3] ‘Think like an engineer‘ by Guru Madhavan [One World Publications, 2016]

Regular readers of this blog might have spotted some of my favourite science books in the lists of sources at the end of posts. Perhaps my top three at the moment are:

[4] Max Tegmark, Our Mathematical Universe, Penguin Books Ltd, 2014. [see: ‘Converting wealth into knowledge and back to wealth‘ on January 6th, 2016; ‘Trees are made of air‘ on April 1st, 2015; ‘Is the Earth a closed system? Does it matter?‘ on December 10th, 2014 & ‘Tidal energy‘ on September 17th, 2014]

[5] Susan Greenfield, A Day in the Life of the Brain, London: Allen Lane, 2016 [see: ‘Digital hive mind‘ on November 30th, 2016; ‘Gone walking‘ on April 19th, 2017 & ‘Walking through exams‘ on May 17th, 2017].

[6] Carlo Rovelli, The Order of Time, Penguin, 2019 [see: ‘We inhabit time as fish inhabit water’ on July 24th, 2019 and ‘Only the name of the airport changes‘ on June 12th, 2019].

Of course, I should not omit the books that I ask students to read for my own first year module in thermodynamics:

Peter Atkins, A very short introduction to thermodynamics, Oxford: OUP, 2010.

Manuel Delanda ‘Philosophy and Simulation: The Emergence of Synthetic Reason‘, London: Continuum Int. Pub. Group, 2011 [see: ‘More violent storms‘ on March 1st, 2017; ‘Emergent properties‘ on September 16th, 2015 & ‘Emerging inequality‘ on March 5th, 2014].




Slow deep thoughts from a planet-sized brain

I overheard a clip on the radio last week in which someone was parodying the quote from Marvin, the Paranoid Android in the Hitchhiker’s Guide to the Galaxy: ‘Here I am with a brain the size of a planet and they ask me to pick up a piece of paper. Call that job satisfaction? I don’t.’  It set me thinking about something that I read a few months ago in Max Tegmark’s book: ‘Life 3.0 – being human in the age of artificial intelligence‘ [see ‘Four requirements for consciousness‘ on January 22nd, 2020].  Tegmark speculates that since consciousness seems to require different parts of a system to communicate with one another and form networks or neuronal assemblies [see ‘Digital hive mind‘ on November 30th, 2016], then the thoughts of large systems will be slower by necessity.  Hence, the process of forming thoughts in a planet-sized brain will take much longer than in a normal-sized human brain.  However, the more complex assemblies that are achievable with a planet-sized brain might imply that the thoughts and experiences would be much more sophisticated, if few and far between.  Tegmark suggests that a cosmic mind with physical dimensions of a billion light-years would only have time for about ten thoughts before dark energy fragmented it into disconnected parts; however, these thoughts and associated experiences would be quite deep.


Douglas Adams, The Hitchhiker’s Guide to the Galaxy, Penguin Random House, 2007.

Max Tegmark,  Life 3.0 – being a human in the age of artificial intelligence, Penguin Books, Random House, UK, 2018.


Four requirements for consciousness

Max Tegmark, in his book Life 3.0 – being a human in the age of artificial intelligence, has taken a different approach to defining consciousness compared to those that I have discussed previously in this blog which were based on synchronous firing of assemblies of neurons [see, for example, ‘Digital hive mind‘ on November 30, 2016 or ‘Illusion of self‘ on February 1st, 2017] and on consciousness being an accumulation of sensory experiences [Is there a real ‘you’ or’I’? on March 6th, 2019].  In his book, Tegmark discusses systems based on artificial intelligence; however, the four principles or requirements for consciousness that he identifies could be applied to natural systems: (i) Storage – the system needs substantial information-storage capacity; (ii) Processing – the system must have substantial information-processing capacity; (iii) Independence – the system has substantial independence from the rest of the world; and (iv) Integration – the system cannot consist of nearly independent parts.  The last two requirements are relatively easy to apply; however, the definition of ‘substantial’ in the first two requirements is open to interpretation which leads to discussion of the size of neuronal assembly required for consciousness and whether the 500 million in an octopus might be sufficient [see ‘Intelligent aliens?‘ on January 16th, 2019].


Max Tegmark,  Life 3.0 – being a human in the age of artificial intelligence, Penguin Books, Random House, UK, 2018.

Image: Ollie the Octopus at the Ocean Lab, (Ceridwen CC BY-SA 2.0)