Tag Archives: entropy

Inspirational leadership

Leadership is about inspiring people; whereas, management is about organising tasks and resources.  In a organisational context, strategic leadership is about persuading people to move voluntarily, and together, in a direction that benefits the organisation; while, management is about dealing with the complexity of planning and processes.  The boundary between leadership and management is often blurred; though in my experience, people more frequently believe that they are leading when, in reality, they are managing.  Perhaps, this is because they want to make a difference; but, for most of us, leadership is really hard and requires courage.  The courage to be different.  To be selfless.  The courage to do what is right and not just what is easy.

It is easier to get involved in the detail of making things happen, of telling people how to do things; but that’s management and not leadership.  Leadership is about letting go and trusting others to make the right decisions on the details – having the courage to delegate.  There’s something about entropy in there and not over constraining the system, or under constaining it; but, now I ‘ve got to the entropy vector and that’s a whole different story.

Robert D Handscombe & Eann A Patterson, The Entropy Vector: Connecting Science and Business, Singapore: World Scientific Press, 2004.

Consensus is just a coffee break

milk in coffee‘Consensus is just a coffee break’ to quote Caputo. He argued that if consensus was the ultimate aim then eventually we would all stop talking. The goal of conversation would be silence and as he wrote that would be a strange outcome for a species defined by its ability to speak. It is differences that drive everything: innovation, progress and the processes of life.

In thermodynamics, William Thomson (Lord Kelvin) observed that heat flows into the random motion of molecules and is never recovered, so that eventually a universe of uniform temperature will be created. When heat flows between matter at different temperatures we can extract work, for instance, using a heat engine. No work could be extracted from a universe of uniform temperature and so nothing would happen. Life would cease and there would be cosmic death [see my posts entitled ‘Will it all be over soon‘ on November 2nd, 2016 and ‘Cosmic Heat Death‘ on February 18th, 2015].

In the Hitchhiker’s Guide to the Galaxy, the crew of the Heart of Gold contemplated whether relationships between people were susceptible to the same laws that governed the relationships between atoms and molecules. The answer would appear to be affirmative in terms of dissonance being necessary for action.

So, we should celebrate and respect the differences in our communities. They are essential for a functioning, vibrant and successful society – without them life would not just consist of silent conversations but would cease completely.

Sources:

Caputo JD, Truth: Philosophy in Transit, London: Penguin 2013

Douglas Adams, The Hitchhiker’s Guide to the Galaxy, London: Picador, 2002.

More on white dwarfs and existentialism

Image by Sarah

Image by Sarah

When I was writing about cosmic heat death a couple of weeks ago [see ‘Will it all be over soon?’ posted on November 2nd, 2016], I implied that our sun would expire on a shorter timescale of about 4 to 5 billion years but without mentioning what we expect to happen.  The gravitational field associated with every piece of matter is proportional to the mass of the piece of matter and inversely proportional to distance from its centre.  The size of the sun implies it should collapse under its own gravitational forces, except that the fusion of hydrogen in its core causes an outwards heat transfer, which prevents this from happening. The sun remains a sphere of hot gases with diameter of about 864,000 miles by ‘burning’ hydrogen.  When the hydrogen runs out, the gravitational field will take over and the sun is expected to collapse to a 30,000 mile diameter ball of atoms and free electrons, or a white dwarf.

These are all spontaneous processes and so the total entropy must increase although there are some local reductions.  The heat dissipated following the fusion of two hydrogen nuclei generates more entropy in the surroundings than the local reduction caused by the fusion.  The collapse to white dwarf would appear to represent a substantial reduction of entropy of the sun because the atomic particles are crushed together. However, this is countered by the release of photons to the surroundings which ensures that the entropy of the surroundings increases sufficiently to satisfy the second law of thermodynamics.

Source:

Isaac Asimov, The roving mind: a panoramic view of fringe science, technology, and the society of the future, London: Oxford University Press, 1987.

An extract is available in John Carey (editor), The Faber Book of Science, London: Faber & Faber, 2005.

Will it all be over soon?

milkywayNASAAs you may have gathered from last week’s post [Man, the Rubbish-Maker on October 26th, 2016], I have been reading Italo Calvino’s Complete Cosmicomics.  In one story, ‘World Memory’ the director of a project to document the entire world memory in the ‘expectation of the imminent disappearance of life on Earth’ is explaining to his successor that ‘we have all been aware for some time that the Sun is halfway through its lifespan: however well things went, in four or five billion years everything would be over’.  The latter is one of the scientific conclusions around which Calvino weaves these short stories and this one put into perspective the concerns expressed by some of my students on both my undergraduate course and MOOC in thermodynamics the prospect of a cosmic heat death resulting from the inevitable consequences of the second law of thermodynamics [see my post ‘Cosmic Heat Death‘ on February 18th, 2015].  The second law requires ‘entropy of the universe to increase in all spontaneous processes’.   Entropy was defined by Rudolf Clausius about 160 years ago as the heat dissipated in a process divided by the temperature of the process.  The dissipated heat flows into random motion of molecules from which it is never recovered.  So, as William Thomson observed, this must eventually create a universe of uniform temperature – an equilibrium state corresponding to maximum entropy where nothing happens and life cannot exist.   Entropy has been increasing since the Big Bang about 13.5 billion years ago.  And as Calvino writes, the sun is about halfway through its life – it is expected to collapse into a white dwarf in 4 to 5 billion years when its supply of hydrogen runs out.  These are enormous timescales: the first human cultures appeared about 70,000 years ago [see my post ‘And then we discovered thermodynamics‘ on February 3rd, 2016]  and history would suggest that our civilization will disappear long before the sun expires or cosmic heat death occurs.  A more immediate existential threat is that our local production of entropy on Earth destroys the delicate balance of conditions that allows us to thrive on Earth.  See my post on Free Riders on April 6th, 2016 for thoughts on avoiding this threat.

Sources:

Italo Calvino, The Complete Cosmicomics, London: Penguin Books, 2002.