Tag Archives: design

256 shades of grey

bonnet panelEngineers are increasingly using digital photographs with 256 shades of grey to measure displacement of structural components.  The technique is known as Digital Image Correlation and is the most common way to measure the deformation of engineering structures and components in a laboratory, and increasingly in the field.  DIC provides maps of the displacement of the component surface from which the strain field can be calculated and which in turn allows engineers to assess the behaviour and likely failure modes of the component.  DIC is beginning to revolutionise the way in which we validate computational mechanics models.

DIC involves capturing ‘before’ and ‘after’ images of the component surface while load is applied.  If the surface has a random pattern, which is often created by spray-painting black speckles onto a white background, then it is possible to track the movement of the pattern as the surface moves and deforms.  The images are usually recorded as intensity maps defined by 256 shades of grey or grey levels from white through to black.  A mathematical signature is assigned to facets or sub-images of the intensity map in the ‘before’ image and a correlation algorithm uses the signature to recognise the facet in the ‘after’ image.  The positions of the centre of the facet in the ‘before’ and ‘after’ images indicates the displacement of the corresponding area of the component surface.  Two cameras can be used to provide stereoscopic vision and information on displacements in all directions.

The picture shows a car bonnet or hood panel in a test frame in a laboratory prior to an impact test with a random speckle pattern on the surface to allow DIC to be performed using high-speed cameras. For more details see: Burguete et al , 2013, J. Strain Analysis, doi:10.1177/0309324713498074 at http://sdj.sagepub.com/content/early/2013/09/19/0309324713498074.full.pdf+html

For detailed explanations of DIC try the monograph by Professor Mike Sutton and his colleagues [link.springer.com/content/pdf/bfm%3A978-0-387-78747-3%2F1.pdf] or the chapter on DIC in Optical Methods for Solid Mechanics by Pramod Rastogi and Erwin Hack [http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527411119.html].

For some applications see the special issue on DIC of the Journal of Strain Analysis for Engineering Design [http://sdj.sagepub.com/content/43/8.toc].

Sweeping Kinetics

Last week I left the rubbish on the streets and encouraged you to make a mess in the classroom.  Partly because kinematics does not help us to analyse the forces involved in sweeping rubbish or, more glamorously, an ice hockey puck.  This is the realm of kinetics in which we need to consider the forces acting on objects to cause or impede their motion, such as the push from a broom and the friction against the pavement.  See the 5E lesson plan attached for more details on how Newton’s laws of motion can be applied in these situations.

You might be thinking ‘why should engineers be interested in forces involved in sweeping rubbish?’  Well, it might not be as glamorous as designing sports equipment but someone has to design street sweeping machines that keep our towns and cities clean and it is arguably more beneficial to society and the environment.  Of course, it would be better for the environment if we didn’t drop rubbish that needed sweeping but that’s another post…

5EplanNoD2_force&acceleration

For more on 5E lesson plans see: my post entitled ‘Disease of the modern age’ on June 26th, 2013 and ‘Sizzling Sausages’ on July 3rd, 2013.

For a set of videos on kinetics try: http://www.khanacademy.org/science/physics/forces-newtons-laws

Wind power

Winds are generated by uneven heating of the earth’s atmosphere by the sun, which causes hotter, less dense air to rise and more dense, colder air to be pulled into replace it.  Of course, land masses, water evaporation over oceans, and the rotation of the earth amongst other things added to the complexity of weather systems.  However, essentially weather systems are driven by natural convection, a form of heat or energy transfer, as I hinted in my recent post entitled ‘On the beach’ [24th July, 2013].

If you are thinking of building a wind turbine to extract some of the energy present in the wind, then you would be well-advised to conduct some surveys of the site to assess the potential power output.  The power output of a wind turbine [P] can be defined as a half of the product of the air density [d] multiplied by the area swept by the blades [A] multiplied by the cube of the velocity [v].  So the wind velocity dominates this relationship [P = ½dAv3] and it is important that a site survey assesses the wind velocity.  But the wind velocity is constantly changing so how can this be done meaningfully?

Engineers might tackle this problem by measuring the wind speed for ten minute intervals, or some other relatively short time period, and calculating the average speed for the period.  This process would be repeated over a long period of time, perhaps weeks or months and the results plotted as frequency distribution, i.e. the results would be assigned to ‘bins’ labelled for instance 0.0 to 1.9 m/s, 2.0 to 3.9 m/s, 4.0 to 5.9 m/s etc and then the number of results in each bin plotted to create a bar chart.  The number of results in a bin divided by the total number of results provides the probability that a measurement taken at any random moment would yield a wind speed that would be assigned to that bin.  Consequently, the mathematical function used to describe such a bar chart is called a probability density function.  Now returning to the original relationship, P = ½dAv3 and using the probability density function instead of the wind velocity yields a power density function that can be used to predict the annual output of the turbine taking account of the constantly changing wind velocity.

If you struggled with my very short explanation of probability density functions, then you might try the Khan Academy video on the topic found on Youtube at http://www.youtube.com/watch?v=Fvi9A_tEmXQ

Engineers use probability density functions to process information about lots of random or stochastic events such as forces ocean waves interacting with ships and oil-rigs, flutter in aircraft wings, the forces experienced by a car as its wheels bounce along a road or the motion of an artificial heart valve.  These are all activities for which the underlying mechanics are understood but there is an element of randomness in their behaviour, with respect to time, that means we cannot predict precisely what will be happening at an instant in time; and yet engineers are expected to achieve reliable performance in designs which will encounter stochastic events.  Frequency distributions and probability density functions are one popular approach used by engineers.  Traditionally engineers have studied applied mathematics that was equated to mechanics in high school but increasing they need to understand statistics.

Closed system: water

gio_waterSometime ago I wrote about the need to consider the planet as a closed system, i.e. a system to which no new mass is being added, other than the occasional meteor from space [see my posts ‘Closed systems in nature?’ and ‘Open-world mind-set’ on December 21st, 2012 and January 4th, 2013, respectively].  This closed system approach applies to water.  The total amount of water on the planet does not change and it has been moving around the hydrologic cycle for thousands of years.  Mankind interacts with this cycle changing the chemistry, usefulness and availability of water.  All of us contribute to these changes in a small way but 6.5 billion of us make a big impact.

Most of us are aware of pollution to rivers and groundwater caused by use of fertilizers and pesticides.  We are perhaps less aware that removing groundwater for irrigation, industrial processes and domestic consumption can reduce water pressure underground in coastal regions causing saltwater to percolate and mix with freshwater reserves.  Or that discharges from desalination plants increases the local salinity of seawater while carbon emissions in the atmosphere is sequestered by the oceans raising water acidity levels.  All of these effects can damage ecosystems.

80% of available freshwater resources in the world are used to grow food.  Yet, we also need it in huge quantities for industrial processes, for instance it requires 10 litres of water to make a sheet of paper and 200 litres to make one kilogram of plastic.  Just as in energy consumption, there are huge global variations in daily domestic consumption per capita from 778 litres in Canada, 139 litres in the UK and India to 95 litres in China.

So, in addition to thinking about energy consumption when designing products and services, engineers need to think about water requirements since although there is a renewable supply it is not  infinite or even constant.

The data above was taken from ‘Water: A Global Innovation Outlook Report’ available at http://www.ibm.com/ibm/gio/media/pdf/ibm_gio_water_report.pdf