Tag Archives: uncertainty

Gadget stress

2d543f31-6f09-43ba-875c-c2d5d3bd0cebWe went to the last night of ‘Twelfth Night’ on Saturday at the new, or rather completely rebuilt, Everyman Theatre in Liverpool. It was tremendous entertainment with songs and dance, Shakespearean comedy with a Scouse accent and an exciting start with Viola and the captain of the wrecked ship surging, dripping wet, onto the stage from what looked like a broken mirror lying on the floor but turned out to be a pool of water. Especially exciting for those sitting in the front row, since the Everyman is a theatre in the round and the front row probably got wet! They certainly had stage hands mopping up around their feet at the end of the scene.

I was amazed at the interval to see people on their smart phones and tablets. Maybe they were communicating their excitement about the production on social media but perhaps more likely they were desperate to find out what had been going on in the world and who had sent them messages. For me, time ‘off the grid’, disconnected from the electronic world is precious and to be protected but many people find it hard to disconnect and appear addicted. Our gadgets pander to our tendencies to be workaholics and to socialize.

Dr R. Thara, Director of the Schizophrenia Research Foundation in an interview reported in a piece by T.M. Luhrmann entitled ‘A great depression?’ in the NYT on March 25th, 2014 said “Gadgets. All these gadgets. Nobody thinks for themselves anymore.” We are certainly at risk of having no time to think for ourselves but the risk from our gadgets is more insidious because access to everyone else’s life via social media and professional networks can end up making our own life look dull and potentially depressing. Of course, most of us conspire in creating this false image by only telling the world about the good things that are happening in our lives.

It is better to pick up a good novel if we want to relax and find out more about ourselves. see my post entitled ‘Reading Offline’ on March 19th, 2014.

Fracking

The British Prime Minister, David Cameron has argued in an article in the Sunday Telegraph (on August 11th, 2013) that if we don’t back fracking technology then the country will miss an opportunity to help families with their bills and make the country more competitive.  In his article the Prime Minister only makes the economic case in favour of using fracking to extract shale gas.  He completely ignores the environmental costs of these economic gains, which will always be present as in any industrial process – the second law of thermodynamics tells us to expect these costs – a form of increased entropy.  The environmental costs of fracking are still disputed.  Companies and politicians with something to gain from its successful implementation argue that the costs are very low or insignificant.  However, recent research has concluded that more than 100 earthquakes were triggered in a single year in Ohio due to fracking-related activities (J. Geophysical Research: Solid Earth, doi.org/nh5).  The largest of these quakes was of magnitude 3.9 and was caused by pumping pressurised waste water into a deep well.  There are also concerns that waste water from fracking might contaminate groundwater.

A joint report of the Royal Society and the Royal Academy of Engineering has concluded that the fracking process can be successfully managed without significant risks to the environment or society.  However, in France fracking has been banned.  So, the arguments flow in both directions.  As a society we are addicted to energy, and fossil fuels in particular, and hence we need sources of oil and gas.  The risks involved in extracting shale gas by fracking are probably no greater than those associated with oil or natural gas; its just that they tend to occur closer to people’s backyard, which makes people more sensitive to them.  Actually, the technology has been around and used for a long time; see John Kemp’s column at Reuters for an explanation of the process and its history.  However, if we intend to use it on a larger scale then we need to guard against unexpected consequences and be ready to deal with the mess when things go wrong.  When engineers succeed in these two goals then no one will notice but when they fail the public and many politicians will be quick to attribute blame to them, whereas it likely will be our addiction to fossil fuel that is to blame.

Wind power

Winds are generated by uneven heating of the earth’s atmosphere by the sun, which causes hotter, less dense air to rise and more dense, colder air to be pulled into replace it.  Of course, land masses, water evaporation over oceans, and the rotation of the earth amongst other things added to the complexity of weather systems.  However, essentially weather systems are driven by natural convection, a form of heat or energy transfer, as I hinted in my recent post entitled ‘On the beach’ [24th July, 2013].

If you are thinking of building a wind turbine to extract some of the energy present in the wind, then you would be well-advised to conduct some surveys of the site to assess the potential power output.  The power output of a wind turbine [P] can be defined as a half of the product of the air density [d] multiplied by the area swept by the blades [A] multiplied by the cube of the velocity [v].  So the wind velocity dominates this relationship [P = ½dAv3] and it is important that a site survey assesses the wind velocity.  But the wind velocity is constantly changing so how can this be done meaningfully?

Engineers might tackle this problem by measuring the wind speed for ten minute intervals, or some other relatively short time period, and calculating the average speed for the period.  This process would be repeated over a long period of time, perhaps weeks or months and the results plotted as frequency distribution, i.e. the results would be assigned to ‘bins’ labelled for instance 0.0 to 1.9 m/s, 2.0 to 3.9 m/s, 4.0 to 5.9 m/s etc and then the number of results in each bin plotted to create a bar chart.  The number of results in a bin divided by the total number of results provides the probability that a measurement taken at any random moment would yield a wind speed that would be assigned to that bin.  Consequently, the mathematical function used to describe such a bar chart is called a probability density function.  Now returning to the original relationship, P = ½dAv3 and using the probability density function instead of the wind velocity yields a power density function that can be used to predict the annual output of the turbine taking account of the constantly changing wind velocity.

If you struggled with my very short explanation of probability density functions, then you might try the Khan Academy video on the topic found on Youtube at http://www.youtube.com/watch?v=Fvi9A_tEmXQ

Engineers use probability density functions to process information about lots of random or stochastic events such as forces ocean waves interacting with ships and oil-rigs, flutter in aircraft wings, the forces experienced by a car as its wheels bounce along a road or the motion of an artificial heart valve.  These are all activities for which the underlying mechanics are understood but there is an element of randomness in their behaviour, with respect to time, that means we cannot predict precisely what will be happening at an instant in time; and yet engineers are expected to achieve reliable performance in designs which will encounter stochastic events.  Frequency distributions and probability density functions are one popular approach used by engineers.  Traditionally engineers have studied applied mathematics that was equated to mechanics in high school but increasing they need to understand statistics.

Risk definition

A section from a photoelastic model of turbine disc with a single blade viewed in polarised light to reveal the stress distribution.

Risk is defined as the possibility of something happening multiplied by the consequences when it does happen.  The public understanding of risk sometimes only extends to the first half of this definition.  Engineers seek to reduce the risks associated with component failure.  This means accepting a non-zero probability of failure happening and then designing for least catastrophic consequences.  So for instance in a jet engine, this implies designing so that if a crack develops it is in a blade rather than the disc to which all of the blades are attached.  The engine casing can be designed to contain a single blade breaking off and thus protect the rest of the plane from flying debris, but not to contain the rupture of an entire disc and set of blades.

For more information on the photoelastic stress analysis techniques used to generate the image, see http://www.experimentalstress.com