Tag Archives: Calgary

Reasons I became an engineer: #4

Images from the optical microscope showing the tracks of bacteria interacting with a surfaceThis is the last in a series of posts reflecting on my steps towards becoming an engineer.  At the end of the previous post, I described how I moved to Canada becoming a biomedical engineer in the Medical School at the University of Calgary.  It was a brief period of my career, because shortly after I started, I was encouraged to apply for a lectureship in mechanical engineering at my alma mater which I did successfully.  So, I returned to the University of Sheffield and started my career as an academic engineer.  I continued to work in biomedical engineering, focussing initially on cardiac mechanics [see ‘Tears in the heart’ on July 20th, 2022], then on osseointegrated prostheses [see ‘Turning the screw in dentistry’ on September 9th, 2020] and, more recently, on computational biology [see ‘Hierarchical modelling in engineering and biology’ on March 14th, 2018] and cellular dynamics [see ‘Label-free real-time tracking of individual bacterium’ on January 25th, 2023].  However, the dominant application area of my research has been aerospace engineering informed by, if not also influenced by, my experiences in the Royal Navy, including flying a jet trainer aircraft shortly before leaving.  In the last decade, I have been introduced to nuclear reactor engineering, both fission and fusion, and have used them as vehicles for developing research in digital engineering [see ‘Thought leadership in fusion engineering’ on October 9th, 2019].  This biographical series of posts has described my evolution as an engineer – it was not an ambition I ever had nor did anyone push me towards engineering but I have found that my way of thinking about problems is well-suited to engineering, or perhaps engineering has taught me a way of thinking.

Image: Figure 4 – Tracks (yellow lines) of the sections (purple circles) of four E. coli bacteria experiencing: (a) random diffusion above the surface; (b) rotary attachment; (c) lateral attachment; (d) static attachment. The dynamics of the four bacteria was monitored for approximately 20 s. The length of the scale bars is 5 μm. From Scientific Reports, 12:18146, 2022.

Reasons I became an engineer: #3

Decorative image of photoelastic fringe pattern in section of jet engine componentThis is third in a series of posts reflecting on my path to becoming an engineer.  In the previous one, I described how I left the Royal Navy and became a research assistant at the University of Sheffield in the Department of Mechanical Engineering [see ‘Reasons I became an engineer: #2’ on May 3rd, 2023].  My choice of research topic was dictated by the need for a job because I had to buy myself out of the Royal Navy after they had sponsored my undergraduate degree and I needed a salary to allow me to make the monthly payments.  So, I accepted the first job that was offered when I went back to the University to talk about my options.  I worked on investigating the load and stress distributions in threaded connections with a view to designing bolted joints that would be lighter, stronger and with a longer life.  We used a combination of finite element modelling [see ‘Did cubism inspire engineering analysis?’ on January 25th 2017] and three-dimensional photoelasticity, which is an experimental technique that has fallen out of fashion [see ‘Art and Experimental Mechanics’ on July 17th, 2012].  I was fortunate because all of my work as a research assistant went into my PhD thesis which although not ground-breaking resulted in several journal papers [see ’35 years later and still working on a PhD thesis’ on September 16th 2020] and, with the help of personal contacts, a post-doctoral fellowship at the Medical School at the University of Calgary, Canada.  In Calgary, I worked on the design of experiments to measure the stress in the pericardium, which is a sac that surrounds the heart – still engineering but a major shift in focus from industrially-focussed mechanical engineering toward biomedical engineering.

Image: Fringe pattern in section of photoelastic model of jet engine showing distribution of stress from Patterson EA, Brailly P & Taroni M, High frequency quantitative photoelasticity applied to jet engine components, Experimental Mechanics, 46(6):661-668, 2006.