Category Archives: Learning & Teaching

Choosing a career is like going shopping

WIN_20150616_121335When we go shopping many of us like to try things out and think about when we will use them, or wear them if they are clothes.  Susan Scurlock made this analogy at the Annual Congress of the UK Engineering Professors’ Council in April 2015 when she was talking about keeping children connected to engineering from the playroom floor to a career [see last week’s posting entitled ‘Everyone is born an engineer’].  It focusses attention on the important issue that if we want to attract young people into the engineering profession we have to let them try it out and we also have to offer an enticing prospect.

This might be obvious but we need something attractive to offer. And here, we have a problem because our male-dominated profession has created courses that appear boring and uninspiring to many in society.  This was one of the premises of a National Science Foundation project in the USA that I was involved in which looked at options for change in the engineering curriculum at university.   The main problem is not conceiving imaginative effective changes but persuading colleagues to implement these changes. It can work and there are shining examples such as those programmes with a focus on reducing global poverty and inequality at UC Berkeley and other enlightened institutions which were described by Sarah Mazzetti recently in the New York Times.

We have another big selling point that we tend to keep quiet about. Engineering is the happiest job in the world according to analysis by the Guardian newspaper on April 8th, 2015.

For more on the results of that NSF project see:

Busch-Vishniac, I., Kibler, T., Campbell, P.B., Patterson, E.A., Guillaume, D., Jarosz, J., Chassapis, C., Emery, A., Ellis, G., Whitworth, H., Metz, S., Brainard, S., Ray, P., 2011, Deconstructing Engineering Education Programmes: The DEEP Project to reform the mechanical engineering curriculum, European J Engng Education, 36(3):269-283.

Patterson, E.A., Campbell, P.B., Busch-Vishniac, I., Guillaume, D.W., 2011, The effect of context on student engagement in engineering, European J. Engng Education, 36(3):211-224.

Everyone is born an engineer

Susan Scurlock

Susan Scurlock

This week I want to enthuse about one of the most energetic and exciting speakers that I have heard for a long time: Susan Scurlock, who spoke last month at the Annual Congress of the UK Engineering Professors’ Council (EPC). Susan’s premise is that all young children are engineers. Just look at what toddlers will do if you give them a bag of bricks or when kindergarten kids are given a box of Lego. Somehow we manage to ‘educate’ the engineer out of them before they finish secondary school. So, the solution to increasing the supply of engineers is to nurture these nascent engineering tendencies provided to everyone by nature. Susan founded Primary Engineer in 2005 and in 2014 established the Institution of Primary Engineers and the Institution of Secondary Engineers to support this process. Children can become Primary Engineers through developing their innate engineering skills as part of a programme of activities.

Susan describes it as ‘STEM by stealth’. Her organisation provides training courses for teachers on practically applying Mathematics and Science to design and make activities. The results leave both children and teachers inspired. The Institution’s work is supported by industry, higher education and the Institution of Mechanical Engineers. When children graduate to secondary school they can join the Institution of Secondary Engineers and then move onwards to the professional institutions as student members when they go to university. So, there is pipeline from children’s bricks and Lego to being a professional engineer.

All of this needs support and enthusiasm from the engineering profession. So, if you have already made it through the pipeline then consider helping Susan make it pipeline that doesn’t leak.

Sources:

The EPC made a podcast of Susan’s presentation that you can listen to at:

http://backdoorbroadcasting.net/2015/04/susan-scurlock-the-value-of-engineering-in-primary-schools/

http://epc.ac.uk/congress-2015/

www.primaryengineering.com

Meta-representation competence

toasterdrawingOk, it’s a challenging title and a strange thumb-nail diagram but stick with it!  Last week I was giving revision lectures for my first year class in thermodynamics which is why my post was about problem-solving.  I mentioned the difficulty in persuading students to represent problems pictorially.  It is called meta-representational competence.  It is a knowledge of when visual representations are likely to be appropriate, how to create them and how to interprete them, according to Disessa and Sherin (2000).

It is hard because you need to become comfortable with the slow and uncertain process of creating representations and exploring the space of possibilities, to quote Martin and Schwartz (2014).  This is achieved through practice. Oh, and now we are back to students testing their skills against problems set by their tutors.  It is what engineers learn to do as part of their formation.  They might not realise it but their meta-representation competence is one of the attributes that make them so attractive to employers.

Now, what about that thumb-nail.  Well, it is my picture drawn as part of the staff answer to the Everyday Engineering Example below, which was given to our new engineering students in their first week at university and subsequently discussed with their personal tutor. Can you solve it with my sketch?  Answers via the comments…

Dynamics Example:

A two-slice toaster is switched on by depressing a slider which causes the slices of bread to fall downwards into the toaster between heating elements and also extends a pair of springs at each end of the toaster. When the toast is ready a pair of triggers releases both springs simultaneously, which in turn cause the toast to ‘pop’ up. If the toast is to just not jump completely out of the toaster when it is ready and in the ‘off’ position rests with two-thirds in the toaster, calculate the force that must be applied to the slider when switching on the toaster. Neglect the weight of the mechanism and assume that there are no losses.

Sources:

Disessa AA & Sherin BL, Meta-representation: an introduction, J. Mathematical Behaviour, 19(4):385-398, 2000

Martin L & Schwartz DL, A pragmatic perspective on visual representation and creative thinking, Visual Studies, 29(1):80-93, 2014.

Martin L & Schwartz DL, Prospective adaptation in the use of external representations, Cognition and Instruction, 27(4):370-400, 2009.

Problem-solving in thermodynamics

Painting from Okemos High School Art Collection at MSUDuring November and December I was handing out a sheet of problems every week in my first-year undergraduate thermodynamics class so that students could evaluate and refine their understanding and problem-solving skills as the course progressed. Of course, most students will not have done this and those problem sheets will have been part of their list of good intentions, which have now become part of their revision schedule. Well, perhaps?  Anyway, to help them is attached ‘Professor Patterson’s Patented Problem-solving Procedure (PPPPP)’ for entry-level thermodynamics problems.

PPPPP is written in the context of thermodynamics but actually it is what engineers tend to do when faced with analysis problems, i.e. draw a sketch including all the known information, identify some simplifying assumptions then apply and solve the relevant physical laws. There is plenty of research that shows most of us are visual problem-solvers [e.g. Martin & Schwartz, 2014] but it is remarkably difficult to persuade people to summarize a problem pictorially.  It takes practice and that’s why we give students lots of problems on which to hone their skills.

See my post entitled ‘Love an engineer‘ on September 24th, 2014 for about creative problem-solving engineers.  Or ‘Mind wandering‘ on September 3rd, 2014.

Sources:

Martin, L., & Schwartz, D.,  2014, ‘A pragmatic perspective on visual representation and creative thinking’, Visual Studies, 29(1):80-93.

Painting from Okemos High School Art Collection at MSU