Category Archives: leadership

Thought leadership in fusion engineering

The harnessing of fusion energy has become something of a holy grail – sought after by many without much apparent progress.  It is the energy process that ‘powers’ the stars and if we could reproduce it on earth in a controlled environment then it would offer almost unlimited energy with very low environmental costs.  However, understanding the science is an enormous challenge and the engineering task to design, build and operate a fusion-fuelled power station is even greater.  The engineering difficulties originate from the combination of two factors: the emergent behaviour present in the complex system and that it has never been done before.  Engineering has achieved lots of firsts but usually through incremental development; however, with fusion energy it would appear that it will only work when all of the required conditions are present.  In other words, incremental development is not viable and we need everything ready before flicking the switch.  Not surprisingly, engineers are cautious about flicking switches when they are not sure what will happen.  Yet, the potential benefits of getting it right are huge; so, we would really like to do it.  Hence, the holy grail status: much sought after and offering infinite abundance.

Last week I joined the search, or at least offered guidance to those searching, by publishing an article in Royal Society Open Science on ‘An integrated digital framework for the design, build and operation of fusion power plants‘.  Working with colleagues at the Culham Centre for Fusion Energy, Richard Taylor and I have taken our earlier work on an integrated nuclear digital environment for the nuclear energy using fission [see ‘Enabling or disruptive technology for nuclear engineering?‘ on january 28th, 2015] and combined it with the hierarchical pyramid of testing and simulation used in the aerospace industry [see ‘Hierarchical modelling in engineering and biology‘ on March 14th, 2018] to create a framework that can be used to guide the exploration of large design domains using computational models within a distributed and collaborative community of engineers and scientists.  We hope it will shorten development times, reduce design and build costs, and improve credibility, operability, reliability and safety.  It is a long list of potential benefits for a relatively simple idea in a relatively short paper (only 12 pages).  Follow the link to find out more – it is an open access paper, so it’s free.

References

Patterson EA, Taylor RJ & Bankhead M, A framework for an integrated nuclear digital environment, Progress in Nuclear Energy, 87:97-103, 2016.

Patterson EA, Purdie S, Taylor RJ & Waldon C, An integrated digital framework for the design, build and operation of fusion power plants, Royal Society Open Science, 6(10):181847, 2019.

Wading in reflections

I have written before about Daniel Goleman’s analysis of leadership styles [see ‘Clueless on leadership style‘ on June 14th, 2017]; to implement these styles, he identifies, four competencies you require: self-awareness, self-management, social awareness and relationship management.  Once again, I am involved in teaching helping people develop these competencies through our Science & Technology Leadership CPD programme for aspiring leaders in Research & Development [R&D].  As part of the module on Science Leadership and Ethics we have asked our delegates to write a short essay reflecting on the ethics of one or two real events and, either from experience or vicariously, on the leadership associated with them.  Our delegates find this challenging, especially the reflective aspect which is designed to induce them to think about their self, their feelings and their reactions to events.  They are technologists who are used to writing objectively in technical reports and the concept of writing about the inner workings of their mind is alien to them.

Apparently, the author Peter Carey compared writing to ‘wading in the flooded basement of my mind’ and, to stretch the analogy, I suspect that our delegates are worried about getting out of their depth or perhaps they haven’t found the stairs to the basement yet.  We try to help by providing a map in the form of the flowchart in the thumbnail together with the references below.  Nevertheless, this assignment remains an exercise that most undertake by standing at the top of the stairs with a weak flashlight and that few both get their feet wet and tell us what they find in the basement.

References:

A short guide to reflective writing, University of Birmingham, Library Services Academic Skills Centre, https://intranet.birmingham.ac.uk/as/libraryservices/library/skills/asc/documents/public/Short-Guide-Reflective-Writing.pdf

http://www.bbc.co.uk/bitesize/intermediate2/english/folio/personal_reflective_essay/revision/1/

Sources:

Image: https://www.pinterest.co.uk/pin/589901251161855637/

Goleman D, Boyatzis R & McKee A, The new leaders: transforming the art of leadership into the science of results, London: Sphere, 2002.

Dickson A, Books do furnish a lie, FT Weekend, 18/19 August 2018.

Making things happen

Engineers make things happen and no one notices them when everything works reliably and smoothly.  You could replace engineers in that sentence by managers.  Managers are responsible for people and organisations while engineers are responsible for the systems that underpin modern life.  You can pair scientists and leaders in the same way.  Scientists discover new knowledge which sets a direction for the future of technology while leaders create a vision for their organisation which also sets the direction for the future.  Then engineers and managers turn the imagined futures into reality. Of course the divisions are fuzzy.  Some of us would be considered engineering scientists because we work at the interface between science and engineering.  And many engineers spend more time managing people and organisations than practising engineering.  However, the bottom-line is that engineers and managers are responsible for the functioning of modern society and deserve greater recognition for their successes; if only to ensure a continuous and diverse flow of talented young people into the professions.  So, here are two Liverpool engineers that have made the news recently for their contributions to engineering: Chris Sutcliffe who was awarded  a prestigious Silver Medal from the Royal Academy of Engineering for his role in driving the development of metal 3D printed implants for use in human and veterinary surgery; and Kate Black who was named as one of the Top 50 Women in Engineering for her work on the development of novel functional materials, using inkjet printing, for the manufacture of electronic and optoelectronic devices.

See ‘Happenstance, not engineering?‘ on November 9th, 2016 for an explanation of why people are quick to assign blame when things go wrong and slow to praise when things go well – it’s all about the relative number of sites in the brain capable of blame and praise.